Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects

Author:

Guo Xinmeng,Wang Jiang

Abstract

Acupuncture is one of the oldest traditional medical treatments in Asian countries. However, the scientific explanation regarding the therapeutic effect of acupuncture is still unknown. The much-discussed hypothesis it that acupuncture’s effects are mediated via autonomic neural networks; nevertheless, dynamic brain activity involved in the acupuncture response has still not been elicited. In this work, we hypothesized that there exists a lower-dimensional subspace of dynamic brain activity across subjects, underpinning the brain’s response to manual acupuncture stimulation. To this end, we employed a variational auto-encoder to probe the latent variables from multichannel EEG signals associated with acupuncture stimulation at the ST36 acupoint. The experimental results demonstrate that manual acupuncture stimuli can reduce the dimensionality of brain activity, which results from the enhancement of oscillatory activity in the delta and alpha frequency bands induced by acupuncture. Moreover, it was found that large-scale brain activity could be constrained within a low-dimensional neural subspace, which is spanned by the “acupuncture mode”. In each neural subspace, the steady dynamics of the brain in response to acupuncture stimuli converge to topologically similar elliptic-shaped attractors across different subjects. The attractor morphology is closely related to the frequency of the acupuncture stimulation. These results shed light on probing the large-scale brain response to manual acupuncture stimuli.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress of researches on machine learning combined with neuroimaging in the field of acupuncture;Second International Conference on Biomedical and Intelligent Systems (IC-BIS 2023);2023-08-28

2. EEG Signal Processing for Biomedical Applications;Sensors;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3