Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised Classification and Object-Wise Sampling

Author:

Illarionova SvetlanaORCID,Trekin Alexey,Ignatiev VladimirORCID,Oseledets Ivan

Abstract

Information on forest composition, specifically tree types and their distribution, aids in timber stock calculation and can help to better understand the biodiversity in a particular region. Automatic satellite imagery analysis can significantly accelerate the process of tree type classification, which is traditionally carried out by ground-based observation. Although computer vision methods have proven their efficiency in remote sensing tasks, specific challenges arise in forestry applications. The forest inventory data often contain the tree type composition but do not describe their spatial distribution within each individual stand. Therefore, some pixels can be assigned a wrong label in the semantic segmentation task if we consider each stand to be homogeneously populated by its dominant species. Another challenge is the spatial distribution of individual stands within the study area. Classes are usually imbalanced and distributed nonuniformly that makes sampling choice more critical. This study aims to enhance tree species classification based on a neural network approach providing automatic markup adjustment and improving sampling technique. For forest species markup adjustment, we propose using a weakly supervised learning approach based on the knowledge of dominant species content within each stand. We also propose substituting the commonly used CNN sampling approach with the object-wise one to reduce the effect of the spatial distribution of forest stands. We consider four species commonly found in Russian boreal forests: birch, aspen, pine, and spruce. We use imagery from the Sentinel-2 satellite, which has multiple bands (in the visible and infrared spectra) and a spatial resolution of up to 10 meters. A data set of images for Leningrad Oblast of Russia is used to assess the methods. We demonstrate how to modify the training strategy to outperform a basic CNN approach from F1-score 0.68 to 0.76. This approach is promising for future studies to obtain more specific information about stands composition even using incomplete data.

Publisher

MDPI AG

Subject

Forestry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3