Impacts of Channel Network Type on the Unit Hydrograph

Author:

Czyzyk Kelsey,Mirossi Dario,Abdoulhak Almoatasem,Hassani Sediqa,Niemann Jeffrey D.,Gironás JorgeORCID

Abstract

Unit hydrographs (UHs) remain widely used in hydrologic modeling to predict the stormflow that is produced at a basin outlet in response to runoff generated throughout the basin. Numerous studies have demonstrated that a basin’s UH depends on its geomorphic properties, and several methods estimate synthetic UHs using such properties. However, previous studies have not examined whether the channel network type (such as dendritic, parallel, pinnate, rectangular, and trellis) impacts the UH shape. The objectives of this study were to determine: (1) whether those five network types exhibit distinct UHs, and (2) whether knowledge of the network type is sufficient to replace the actual flow path structure in UH estimation. To achieve these objectives, a UH framework is developed based on kinematic wave theory. The framework allows the impacts of the network structure on the UH to be isolated into two random variables, which facilitates comparisons between network types. The framework is applied to 10 basins of each type. The results show that the five network types exhibit distinct instantaneous UHs, but the type allows accurate UH determination only for pinnate basins.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3