Efficient Acceleration of Stencil Applications through In-Memory Computing

Author:

Yantır Hasan ErdemORCID,Eltawil Ahmed M.ORCID,Salama Khaled N.ORCID

Abstract

The traditional computer architectures severely suffer from the bottleneck between the processing elements and memory that is the biggest barrier in front of their scalability. Nevertheless, the amount of data that applications need to process is increasing rapidly, especially after the era of big data and artificial intelligence. This fact forces new constraints in computer architecture design towards more data-centric principles. Therefore, new paradigms such as in-memory and near-memory processors have begun to emerge to counteract the memory bottleneck by bringing memory closer to computation or integrating them. Associative processors are a promising candidate for in-memory computation, which combines the processor and memory in the same location to alleviate the memory bottleneck. One of the applications that need iterative processing of a huge amount of data is stencil codes. Considering this feature, associative processors can provide a paramount advantage for stencil codes. For demonstration, two in-memory associative processor architectures for 2D stencil codes are proposed, implemented by both emerging memristor and traditional SRAM technologies. The proposed architecture achieves a promising efficiency for a variety of stencil applications and thus proves its applicability for scientific stencil computing.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference50 articles.

1. The chips are down for Moore’s law

2. 1.1 Computing's energy problem (and what we can do about it)

3. Big Data: Big Challenge or Big Opportunityhttps://www.ibm.com/watson/infographic/discovery/big-data-challenge-opportunity/

4. High Performance Stencil Code Algorithms for GPGPUs

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3