Abstract
Entropy of multivariate distributions may be estimated based on the distances of nearest neighbours from each sample from a statistical ensemble. This technique has been applied on biomolecular systems for estimating both conformational and translational/rotational entropy. The degrees of freedom which mostly define conformational entropy are torsion angles with their periodicity. In this work, tree structures and algorithms to quickly generate lists of nearest neighbours for periodic and non-periodic data are reviewed and applied to biomolecular conformations as described by torsion angles. The effect of dimensionality, number of samples, and number of neighbours on the computational time is assessed. The main conclusion is that using proper data structures and algorithms can greatly reduce the complexity of nearest neighbours lists generation, which is the bottleneck step in nearest neighbours entropy estimation.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献