Dynamic Effective Elasticity of Melanoma Cells under Shear and Elongational Flow Confirms Estimation from Force Spectroscopy

Author:

Jötten Anna MartinaORCID,Neidinger Simon V.,Tietze Julia K.,Welzel JuliaORCID,Westerhausen Christoph

Abstract

The detection and enrichment of circulating melanoma cells is a challenge, as the cells are very heterogeneous in terms of their biomechanical properties and surface markers. In addition, there is a lack of valid and reliable biomarkers predicting progress and therapeutic response. In this study, we analyze the elasticity of A375 melanoma cells by applying force spectroscopy and a microfluidic method. To identify and eventually separate freely circulating tumor cells, it is crucial to know their physical properties precisely. First, we use standard AFM force spectroscopy, where the elasticity of the cells is calculated from indentation with a pyramidal tip. To extend the limits of the measurements with a tip, we then use cantilevers without a tip to apply force over a larger area of the cells. The resulting Young’s moduli are slightly lower and vary less without the tip, presumably because of the spatial inhomogeneity of the cells. Finally, we implement our microfluidic method: we measure single cell elasticity by analyzing their deformation in high-speed micrographs while passing a stenosis. Combining the force field and the change in shape provides the basis for a stress–strain diagram. The results from the microfluidic deformation analysis were well in accordance with the results from force spectroscopy. The microfluidic method, however, provides advantages over conventional methods, as it is less invasive and less likely to harm the cell during the measurement. The whole cell is measured as one entity without having contact to a stiff substrate, while force spectroscopy is limited to the contact area of the tip, and in some cases dependent of the cell substrate interaction. Consequently, microfluidic deformation analysis allows us to predict the overall elastic behavior of the whole, inhomogeneous cell in three-dimensional force fields. This method may contribute to improve the detection of circulating melanoma cells in the clinical practice.

Funder

University of Augsburg

Center for NanoScience

German National Academic Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3