Energy Dissipation Hypothesis Applied to Enhance the Affinity of Thrombin Binding Aptamer

Author:

Zhdanov GlebORCID,Arutyunyuan Alexander,Kopylov AlexeyORCID,Zavyalova ElenaORCID

Abstract

Nucleic acid aptamers are artificial recognizing molecules that are capable of specific binding to a wide variety of targets. Aptamers are commonly selected from a huge library of oligonucleotides and improved by introducing several mutations or modular constructions. Although aptamers hold great promise as therapeutic and diagnostic tools, no simple approach to improve their affinity has been suggested yet. Our recent analysis of aptamer–protein complexes revealed that aptamer affinity correlates with the size of an amino acid sidechain in the protein interface that was explained by efficient dissipation of the energy released during complex formation. G-quadruplex-based thrombin aptamers are not involved in the described dependence. Moreover, aptamers to the same thrombin site have 100-fold differences in affinity. Here we focused on a detailed analysis of the nucleic acid interface of thrombin–aptamer complexes. High affinity of the aptamers was shown to correlate with the solvent accessibility of the apolar part of recognizing loops. To prove the concept experimentally, these loops were modified to enhance contact with the solvent. Dissociation rates of the aptamer–thrombin complexes were drastically slowed due to these modifications. In full correspondence with the energy dissipation hypothesis, the modifications improved both the stability of the G-quadruplexes and affinity to thrombin. The most evident effect was shown for unstable Na+-coordinated G-quadruplexes. These data are of high interest for a directed improvement of aptamers introducing unnatural modifications into the ‘hot spot’ residues.

Funder

Council for Grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3