Affiliation:
1. Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
2. Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
Abstract
This opinion manuscript outlines how the hippocampal theta rhythm could receive two novel peripheral inputs. One of the ways this could be achieved is through Piezo2 channels and atypical hippocampal-like metabotropic glutamate receptors coupled to phospholipase D containing proprioceptive primary afferent terminals. Accordingly, activated proprioceptive terminal Piezo2 on Type Ia fibers synchronizes to the theta rhythm with the help of hippocampal Piezo2 and medial septal glutamatergic neurons. Second, after baroreceptor Piezo2 is entrained to activated proprioceptive Piezo2, it could turn on the Cav1.3 channels, which pace the heart rhythm and regulate pacemaker cells during cardiac sympathetic activation. This would allow the Cav1.3 channels to synchronize to theta rhythm pacemaker hippocampal parvalbumin-expressing GABAergic neurons. This novel Piezo2-initiated proton–proton frequency coupling through VGLUT2 may provide the ultrafast long-range signaling pathway for the proposed Piezo2 synchronization of the low-frequency glutamatergic cell surface membrane oscillations in order to provide peripheral spatial and speed inputs to the space and speed coding of the hippocampal theta rhythm, supporting locomotion, learning and memory. Moreover, it provides an ultrafast signaling for postural and orthostatic control. Finally, suggestions are made as to how Piezo2 channelopathy could impair this ultrafast communication in many conditions and diseases with not entirely known etiology, leading to impaired proprioception and/or autonomic disbalance.
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry