Improving the Adhesiveness of Cemented Glass Components by DBD Plasma Pre-Treatment at Atmospheric Pressure

Author:

Gerhard ChristophORCID,Mielke Gerrit,Brückner Stephan,Wermann Olaf

Abstract

Cemented optical components and groups are essential devices for the realisation of modern systems and apparatuses used in a broad range of different applications such as telecommunications, imaging and even surgery. However, various parameters may affect the stability of cemented connections. In this context, the impact of dielectric barrier discharge plasma at atmospheric pressure on the adhesiveness of cemented glass components was evaluated in the present work. For this purpose, the plasma-induced change in surface wettability and energy as well as the cement’s adhesive pull strength was measured. Investigations were performed on samples, which were subject to different procedures of artificial ageing. It is shown that the adhesive pull strength of cemented glass components was notably increased after a short-term plasma treatment of merely 10 s due to an enhanced wettability of the applied UV-curing optical cement. The pull strength, i.e., the adhesiveness of cemented glasses was increased by a factor of 2.1 to 4.6, depending on the particularly applied artificial ageing procedure. The results and findings finally demonstrate the high potential of the applied short-term plasma treatment as a cleaning and surface activation step in optics manufacturing on an industrial scale.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3