Abstract
Despite presenting a very high global warming toll, Portland cement concrete is the most widely used construction material in the world. The eco-efficiency, economy, and the overall mechanical and durability performances of concrete can be improved by incorporating supplementary cementitious materials (SCMs) as partial substitutions to ordinary Portland cement (OPC). Naturally found bentonite possesses pozzolanic properties and has very low carbon footprint compared to OPC. By applying activation techniques, the reactivity of bentonite can be improved, and its incorporation levels can be maximized. In this study, the influence of mechanical and thermo-mechanical activation of bentonite is investigated on properties of concrete. Bentonite was used for 0%, 10%, 15%, 20%, 25%, 30%, and 35% mass replacements of OPC. Mechanical (compressive strength and split tensile strength) and durability (water absorption, sorptivity coefficient, and acid attack resistance) properties were studied. Results of experimental testing revealed that, concrete containing bentonite showed good mechanical performance, while durability was significantly improved relative to control mix. Application of thermo-mechanical activation can enhance the incorporation levels of bentonite in concrete. At 15% and 25%, bentonite produced optimum results for mechanical and thermo-mechanical activation, respectively. Bentonite inclusion is more beneficial to the durability than the mechanical strength of concrete.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献