Non-Stationary Turbulent Wind Field Simulation of Long-Span Bridges Using the Updated Non-Negative Matrix Factorization-Based Spectral Representation Method

Author:

Xu Zidong,Wang HaoORCID,Zhang HanORCID,Zhao Kaiyong,Gao Hui,Zhu Qingxin

Abstract

Numerical simulation of the turbulent wind field on long-span bridges is an important task in structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme wind events, some efforts have been paid to update the classic spectral representation method (SRM) and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency. Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically, the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB) site. The coherence function considering the phase angles is utilized to generate the turbulent wind fields for towers. The simulation accuracy is validated by comparing the simulated and target auto-/cross-correlation functions. Results show that the updated method performs well in generating the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in adjacent regions.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Jiangsu Provincial Department of Finance

Ministry of Education of the People's Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3