Phase Transitions in Wireless MESH Networks and Their Application in Early Detection of Network Coherence Loss

Author:

Paszkiewicz AndrzejORCID,Bolanowski MarekORCID,Zapała Przemysław

Abstract

The paper focuses on the phenomenon of phase transitions related to changes taking place directly in a network structure; i.e., in physical topology. Although these changes are related to the physical layer, they directly affect the functioning of higher layers, and thus the quality and efficiency of network transmission. The research presented herein was focused in particular on phase transformations in MESH type wireless topologies. The dependence between the values of radius (transmitter power) nodes and the coherence of the MESH network is presented. These considerations are important for understanding the dynamics of processes occurring in topological structures, and for optimizing the use of power sources for individual nodes. The paper also presents the use of phase transition analysis for early detection of network coherence loss at the physical layer level. A new mechanism for assessing the level of network communication and an active method of preventing its failure using the arbiter and a set of limited diagnostic information are described. The solution presented can be used both in Internet of Things (IoT) systems and Industry 4.0 to create a high level of reliability wireless connection infrastructure between mobile and fixed devices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Biological transitions

2. Brain Performance versus Phase Transitions

3. Phase transitions in models of human cooperation

4. Introduction to Phase Transitions and Critical Phenomena;Stanley,1989

5. The Physics of Phase Transition: Concepts and Applications;Papon,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3