Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete

Author:

Shariati Mahdi,Mafipour Mohammad Saeed,Mehrabi PeymanORCID,Bahadori Alireza,Zandi YousefORCID,Salih Musab N A,Nguyen HoangORCID,Dou JieORCID,Song Xuan,Poi-Ngian Shek

Abstract

Channel shear connectors are known as an appropriate alternative for common shear connectors due to having a lower manufacturing cost and an easier installation process. The behavior of channel connectors is generally determined through conducting experiments. However, these experiments are not only costly but also time-consuming. Moreover, the impact of other parameters cannot be easily seen in the behavior of the connectors. This paper aims to investigate the application of a hybrid artificial neural network–particle swarm optimization (ANN-PSO) model in the behavior prediction of channel connectors embedded in normal and high-strength concrete (HSC). To generate the required data, an experimental project was conducted. Dimensions of the channel connectors and the compressive strength of concrete were adopted as the inputs of the model, and load and slip were predicted as the outputs. To evaluate the ANN-PSO model, an ANN model was also developed and tuned by a backpropagation (BP) learning algorithm. The results of the paper revealed that an ANN model could properly predict the behavior of channel connectors and eliminate the need for conducting costly experiments to some extent. In addition, in this case, the ANN-PSO model showed better performance than the ANN-BP model by resulting in superior performance indices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference97 articles.

1. Composite Steel and Concrete Structural Members: Fundamental Behaviour;Oehlers,1995

2. Large-scale fatigue testing of post-installed shear connectors in partially-composite bridge girders

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3