Temporal Analysis and Classification of Sensor Signals

Author:

Kosiuczenko Piotr1

Affiliation:

1. Institute of Information Systems, Military University of Technology, 00-908 Warsaw, Poland

Abstract

Understanding the behaviour of sensors, and in particular, the specifications of multisensor systems, are complex problems. The variables that need to be taken into consideration include, inter alia, the application domain, the way sensors are used, and their architectures. Various models, algorithms, and technologies have been designed to achieve this goal. In this paper, a new interval logic, referred to as Duration Calculus for Functions (DC4F), is applied to precisely specify signals originating from sensors, in particular sensors and devices used in heart rhythm monitoring procedures, such as electrocardiograms. Precision is the key issue in case of safety critical system specification. DC4F is a natural extension of the well-known Duration Calculus, an interval temporal logic used for specifying the duration of a process. It is suitable for describing complex, interval-dependent behaviours. Said approach allows one to specify temporal series, describe complex interval-dependent behaviours, and evaluate the corresponding data within a unifying logical framework. The use of DC4F allows one, on the one hand, to precisely specify the behaviour of functions modelling signals generated by different sensors and devices. Such specifications can be used for classifying signals, functions, and diagrams; and for identifying normal and abnormal behaviours. On the other hand, it allows one to formulate and frame a hypothesis. This is a significant advantage over machine learning algorithms, since the latter are capable of learning different patterns but fail to allow the user to specify the behaviour of interest.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Wearable sensors and devices for real-time cardiovascular disease monitoring;Lin;Cell Rep. Phys. Sci.,2021

2. Radar-Based Heart Sound Detection;Will;Sci. Rep.,2018

3. Li, H., and Boulanger, P. (2020). A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG). Sensors, 20.

4. Gabbay, D.M., and Guenthner, F. (2001). Handbook of Philosophical Logic, Springer.

5. Dąbrowski, A., Woleński, J., Hoły-Łuczaj, M., Szocik, K., and Schumann, A. (2022). Leksykon Logików Polskich 1900–1939, Copernicus Center Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3