Improved RAkEL’s Fault Diagnosis Method for High-Speed Train Traction Transformer

Author:

Li Man123ORCID,Zhou Xinyi12ORCID,Qin Siyao2ORCID,Bin Ziyan2,Wang Yanhui123

Affiliation:

1. State Key Laboratory of Advanced Rail Autonomous Operation, Beijing Jiaotong University, Beijing 100044, China

2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

3. Beijing Research Center of Urban Traffic Information Sensing and Service Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract

The traction system is very important to ensure the safe operation of high-speed trains, and the failure of the traction transformer is the most likely fault in the traction system. Fault diagnosis in actual work relies largely on manual experience. This paper proposes an improved RAkEL (Random k-Labelsets) algorithm for the fault diagnosis of high-speed train traction transformers. Firstly, this article starts from the large amount of “sleeping” fault maintenance data accumulated by the railway department, takes a single maintenance record as an instance, uses specific monitoring values to construct an instance vector, and uses the fault phenomena corresponding to the monitoring indicators as labels. Then, this paper improves the step of selecting k-labelsets in RAkEL, and extracts associated faults using the Relief algorithm. Finally, this paper excavates and uses the association rules between data and faults to identify traction transformer faults. The results showed that the improved RAkEL diagnostic method had a significant improvement in the evaluation indicators. Compared with other multi-label classification algorithms, including BR (Binary Relevance) and CLR (Calibrated Label Ranking), this method performs well on multiple evaluation indicators. It can further help engineers perform timely maintenance work in the future.

Funder

State Key Laboratory of Rail Traffic Control and Safety

Youth Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3