A Novel Deep Convolutional Neural Network Combining Global Feature Extraction and Detailed Feature Extraction for Bearing Compound Fault Diagnosis

Author:

Han Shuzhen12ORCID,Niu Pingjuan13,Luo Shijie2,Li Yitong2,Zhen Dong4ORCID,Feng Guojin4,Sun Shengke5ORCID

Affiliation:

1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China

2. Office of the Cyberspace Affairs, Tiangong University, Tianjin 300387, China

3. School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China

4. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

5. School of Software, Tiangong University, Tianjin 300387, China

Abstract

This study researched the application of a convolutional neural network (CNN) to a bearing compound fault diagnosis. The proposed idea lies in the ability of CNN to automatically extract fault features from complex raw signals. In our approach, to extract more effective features from a raw signal, a novel deep convolutional neural network combining global feature extraction with detailed feature extraction (GDDCNN) is proposed. First, wide and small kernel sizes are separately adopted in shallow and deep convolutional layers to extract global and detailed features. Then, the modified activation layer with a concatenated rectified linear unit (CReLU) is added following the shallow convolution layer to improve the utilization of shallow global features of the network. Finally, to acquire more robust features, another strategy involving the GMP layer is utilized, which replaces the traditional fully connected layer. The performance of the obtained diagnosis was validated on two bearing datasets. The results show that the accuracy of the compound fault diagnosis is over 98%. Compared with three other CNN-based methods, the proposed model demonstrates better stability.

Funder

Tianjin Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3