A Combinatorial Optimization Strategy for Performance Improvement of Stratum Ventilation Considering Outdoor Weather Changes and Metabolic Rate Differences: Energy Consumption and Sensitivity Analysis

Author:

Bai Yan12,Wei Zhuo1

Affiliation:

1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Since occupants spend most of their time indoors, an energy-saving and comfortable indoor environment are particularly important. The differences in the metabolic rate of occupants make them have different requirements for their thermal environment. To save energy under the comprehensive needs of occupants for thermal environment, the combinatorial optimization strategy based on NSGA-II and improved the TOPSIS method is proposed in this study. Firstly, the physical model of the CFD simulation is verified by experiments. Secondly, the specific operation cases corresponding to combinations of different levels of factors are determined via the RSM method, and the ventilation performance prediction model considering the metabolic rate differences and outdoor weather changes is established. Thirdly, supply air velocities and temperatures are optimized by using Pareto-based NSGA-II; the Pareto optimal solution set under different outdoor temperatures is obtained. Finally, based on the Pareto optimal solutions at different outdoor temperatures, the optimal strategy under dynamic outdoor air temperature is obtained by improved TOPSIS by the CRITIC method. The optimization of ventilation parameters significantly improved the ventilation performance, and the results show that the predicted mean vote, energy consumption, vertical air temperature difference between head and ankle levels and the local mean age of air for different metabolic rates decrease by 64.1%, 4.74%, 24.83% and 7.39% on average, respectively. Moreover, the relative energy saving rate increases as the metabolic rate increases, and the strategy facilitates adaptation to outdoor weather changes and meets the individual needs of occupants for the indoor environment. This has important implications for achieving the global goal of energy efficiency and emission reduction.

Funder

13th Five Year Plan Project of Education Science in Shaanxi Province

Science and Technology Project of Housing and Urban-Rural construction of Shaanxi Province

Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving of Anhui University of Architecture

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3