Microgrid Robust Planning Model and Its Modification Strategy Based on Improved Grey Relational Theory

Author:

Xu Jiayin1,Gui Xu1,Li Kun1,Jiang Guifen1,Wang Tao1,Xu Zhen2

Affiliation:

1. Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China

2. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Abstract

A two-stage robust planning model is constructed in this paper, which can reduce the joint planning uncertainty of a wind-photovoltaic-energy storage system caused by the stochastic characteristics of renewable energy and ensure the sustainability of the power grid. Considering the life loss of energy storage system comprehensively, the joint planning is realized in the worst scenario. Addressing the problem that subjective and uniform robustness parameters in robust optimization cannot cope with the differentiated characteristics of each uncertainty, a robust microgrid-planning model and its modification strategy based on improved grey relational theory are proposed. The idea of weight distribution and dynamic value of identification coefficients are introduced into grey relational theory, so as to enhance the weight of indicators that influence planning and the relational degree between them, which can avoid the locally relational tendency. According to the relation degree, the renewable energy’s robustness parameters are modified to improve the applicability and flexibility of the microgrid-planning results. Finally, the effectiveness and superiority of the proposed theory and method are verified using a case study approach.

Funder

Science and Technology Project of State Grid Anhui Electric Power Co., Ltd

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resiliency planning of distribution network using of active distribution network partitioning;Heliyon;2024-08

2. Optimal Operation of Microgrid with Energy Storage Considering the Energy-Loss Rate;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3