State of Charge Estimation of Lithium-Ion Batteries Using Stacked Encoder–Decoder Bi-Directional LSTM for EV and HEV Applications

Author:

Terala Pranaya K.ORCID,Ogundana Ayodeji S.,Foo Simon Y.,Amarasinghe Migara Y.,Zang Huanyu

Abstract

Energy storage technologies are being used excessively in industrial applications and in automobiles. Battery state of charge (SOC) is an important metric to be monitored in these applications to ensure proper and safe functionality. Since SOC cannot be measured directly, this paper puts forth a novel machine learning architecture to improve on the existing methods of SOC estimation. This method consists of using combined stacked bi-directional LSTM and encoder–decoder bi-directional long short-term memory architecture. This architecture henceforth represented as SED is implemented to overcome the nonparallel functionality observed in traditional RNN algorithms. Estimations were made utilizing different open-source datasets such as urban dynamometer driving schedule (UDDS), highway fuel efficiency test (HWFET), LA92 and US06. The least Mean Absolute Error observed was 0.62% at 25 °C for the HWFET condition, which confirms the good functionality of the proposed architecture.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3