Author:
Li Zhihao,Zhao Yugang,Liu Guangxin,Cao Chen,Liu Qian,Zhao Dandan,Zhang Xiajunyu,Zhao Chuang,Yu Hanlin
Abstract
High-performance iron-based Al2O3 magnetic abrasive powder (MAP) prepared by combining plasma molten metal powder with sprayed abrasive powder is used for magnetic abrasive finishing (MAF) of AZ31B magnesium alloy to remove surface defects such as creases, cracks, scratches, and pits generated during the manufacturing process of the workpiece, and to reduce surface roughness and improve its wear and corrosion resistance. In order to solve the problem of magnetic abrasive powder splash in the MAF process, the force analysis of the MAP in the processing area is conducted, and a composite magnetic pole processing device was designed and simulated to compare the effects of both devices on MAF, confirming the feasibility of composite magnetic pole grinding. Then, experiments have been designed using Response Surface Methodology (RSM) to investigate the effect of four factors-magnetic pole rotation speed, grinding gap, magnetic pole feed rate, magnetic abrasive filling quantity-on surface roughness and the interactions between them. The minimum surface roughness value that can be obtained is used as the index for parameter optimization, and the optimized parameters are used for experiments, and the results show that the established surface roughness model has good predictive ability.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献