A Statistical Performance Analysis of Named Data Ultra Dense Networks

Author:

Rehman Muhammad Atif UrORCID,Kim DonghakORCID,Choi KyungmeeORCID,Ullah RehmatORCID,Kim Byung SeoORCID

Abstract

Named data networking (NDN) is a novel communication paradigm that employs names rather than references to the location of the content. It exploits in-network caching among different nodes in a network to provide the fast delivery of content. Thus, it reduces the backhaul traffic on the original producer and also eliminates the need for a stable connection between the source (consumer) and destination (producer). However, a bottleneck or congestion may still occur in very crowded areas, such as shopping malls, concerts, or stadiums, where thousands of users are requesting information from a device that resides at the edge of the network. This paper provides an analysis of content delivery in terms of the interest satisfaction rate (ISR) in ultra-dense network traffic situations and presents a final and an adequate statistical model based on multiple linear regression (MLR) to enhance ISR. A four-way factorial design was used to generate the dataset by performing simulations in ndnSIM. The results show that there is no significant interaction between four predictors: number of nodes (NN), number of interests (NI) per second, router bandwidth (RB), and router delay (RD). Moreover, the NI has a negative effect, and log(RB) has a positive effect on the ISR. The NN less than 10 has a significantly higher effect on the ISR compared with other nodes’ densities.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3