A Fast Signal Estimation Method Based on Probability Density Functions for Fault Feature Extraction of Rolling Bearings

Author:

Li Shijun,Huang Weiguo,Shi JuanjuanORCID,Jiang Xingxing,Zhu Zhongkui

Abstract

Fault diagnosis of rolling bearings is essential to ensure the efficient and safe operation of mechanical equipment. The extraction of fault features of the repetitive transient component from noisy vibration signals is key to bearing fault diagnosis. However, the bearing fault-induced transients are often submerged by strong background noise and interference. To effectively detect such fault-related transient components, this paper proposes a probability- and statistics-based method. The maximum-a-posteriori (MAP) estimator combined with probability density functions (pdfs) of the repetitive transient component, which is modeled by a mixture of two Laplace pdfs and noise, were used to derive the fast estimation model of the transient component. Subsequently, the LapGauss pdf was adopted to model the noisy coefficients. The parameters of the model derived could then be estimated quickly using the iterative expectation–maximization (EM) algorithm. The main contributions of the proposed statistic-based method are that: (1) transients and their wavelet coefficients are modeled as mixed Laplace pdfs; (2) LapGauss pdf is used to model noisy signals and their wavelet coefficients, facilitating the computation of the proposed method; and (3) computational complexity changes linearly with the size of the dataset and thus contributing to the fast estimation, indicated by analysis of the computational performance of the proposed method. The simulation and experimental vibration signals of faulty bearings were applied to test the effectiveness of the proposed method for fast fault feature extraction. Comparisons of computational complexity between the proposed method and other transient extraction methods were also conducted, showing that the computational complexity of the proposed method is proportional to the size of the dataset, leading to a high computational efficiency.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3