The Application of Improved YOLO V3 in Multi-Scale Target Detection

Author:

Ju ,Luo ,Wang ,Hui ,Chang

Abstract

Target detection is one of the most important research directions in computer vision. Recently, a variety of target detection algorithms have been proposed. Since the targets have varying sizes in a scene, it is essential to be able to detect the targets at different scales. To improve the detection performance of targets with different sizes, a multi-scale target detection algorithm was proposed involving improved YOLO (You Only Look Once) V3. The main contributions of our work include: (1) a mathematical derivation method based on Intersection over Union (IOU) was proposed to select the number and the aspect ratio dimensions of the candidate anchor boxes for each scale of the improved YOLO V3; (2) To further improve the detection performance of the network, the detection scales of YOLO V3 have been extended from 3 to 4 and the feature fusion target detection layer downsampled by 4× is established to detect the small targets; (3) To avoid gradient fading and enhance the reuse of the features, the six convolutional layers in front of the output detection layer are transformed into two residual units. The experimental results upon PASCAL VOC dataset and KITTI dataset show that the proposed method has obtained better performance than other state-of-the-art target detection algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments

2. A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications;Nguyen-Meidine;arXiv,2018

3. RemoteNet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos;Yu;arXiv,2018

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3