The Measurement Problem Is a Feature, Not a Bug–Schematising the Observer and the Concept of an Open System on an Informational, or (Neo-)Bohrian, Approach

Author:

Cuffaro Michael E.1ORCID

Affiliation:

1. Munich Center for Mathematical Philosophy, LMU Munich, Geschwister-Scholl-Platz 1, 80539 München, Germany

Abstract

I flesh out the sense in which the informational approach to interpreting quantum mechanics, as defended by Pitowsky and Bub and lately by a number of other authors, is (neo-)Bohrian. I argue that on this approach, quantum mechanics represents what Bohr called a “natural generalisation of the ordinary causal description” in the sense that the idea (which philosophers of science like Stein have argued for on the grounds of practical and epistemic necessity) that understanding a theory as a theory of physics requires that one be able to “schematise the observer” within it is elevated in quantum mechanics to the level of a postulate in the sense that interpreting the outcome of a measurement interaction, as providing us with information about the world, requires as a matter of principle, the specification of a schematic representation of an observer in the form of a ‘Boolean frame’—the Boolean algebra representing the yes-or-no questions associated with a given observable representative of a given experimental context. I argue that the approach’s central concern is with the methodological question of how to assign physical properties to what one takes to be a system in a given experimental context, rather than the metaphysical question of what a given state vector represents independently of any context, and I show how the quantum generalisation of the concept of an open system may be used to assuage Einstein’s complaint that the orthodox approach to quantum mechanics runs afoul of the supposedly fundamental methodological requirement to the effect that one must always be able, according to Einstein, to treat spatially separated systems as isolated from one another.

Funder

Alexander von Humboldt Foundation

German Research Council

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference77 articles.

1. Demopoulos, W. (2022). On Theories, Harvard University Press.

2. Perović, S. (2021). From Data to Quanta–Niels Bohr’s Vision of Physics, University of Chicago Press.

3. Perspectival objectivity;Evans;Eur. J. Philos. Sci.,2020

4. Brukner, Č. (2017). Quantum [Un] Speakables II, Springer.

5. Bub, J. (2017). Why Bohr was (mostly) right. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3