Abstract
Human motion recognition based on wearable devices plays a vital role in pervasive computing. Smartphones have built-in motion sensors that measure the motion of the device with high precision. In this paper, we propose a human lower limb motion capture and recognition approach based on a Smartphone. We design a motion logger to record five categories of limb activities (standing up, sitting down, walking, going upstairs, and going downstairs) using two motion sensors (tri-axial accelerometer, tri-axial gyroscope). We extract the motion features and select a subset of features as a feature vector from the frequency domain of the sensing data using Fast Fourier Transform (FFT). We classify and predict human lower limb motion using three supervised learning algorithms: Naïve Bayes (NB), K-Nearest Neighbor (KNN), and Artificial Neural Networks (ANNs). We use 670 lower limb motion samples to train and verify these classifiers using the 10-folder cross-validation technique. Finally, we design and implement a live detection system to validate our motion detection approach. The experimental results show that our low-cost approach can recognize human lower limb activities with acceptable accuracy. On average, the recognition rate of NB, KNN, and ANNs are 97.01%, 96.12%, and 98.21%, respectively.
Funder
the Natural Science Foundation of Department of Education, Sichuan Province, China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献