Abstract
A fiber Bragg grating (FBG)-based aluminum oxide tube packed sensor (ATPS) was developed for the fast detection of the soil moisture profile in highway slopes and subgrades. The novel ATPS consists of an aluminum oxide tube with a diameter of 5 mm, an optical fiber containing a quasi-distributed FBG sensors, a “U”-shaped resistance wire, and a flange. There are four 0.9-mm diameter holes in the ATPS. Laboratory experiments were carried out to calibrate the relationship between the thermal response of ATPS and the soil moisture content. Two laboratory rainfall validation model tests were performed to validate the ATPS for capturing the soil moisture profile in highway slopes and subgrades. During the validations, the accuracy of the ATPS was quantified, and water infiltration through grassy and grassless ground surfaces were investigated. The calibrations indicate that the ATPS can detect and record real-time changes in the highway slope and subgrade moisture after rainfall, and reveal the most dangerous zones that occur at the connection between different construction materials. The average measurement accuracy of soil moisture monitoring was 0.015 m3/m3. Please note that the connection is where cracks form easily and the soil hydraulic conductivity increases significantly. The test results also indicate that grassy cover (lawn) significantly prevents water infiltration during the first few minutes of rainfall (twelve minutes in this study), after which, however, the infiltration rate drops sharply. The influence of lawn on water infiltration depends on the soil structure, hydraulic conductivity, and rainfall time. In summary, due to its small size and fast detection, the ATPS is a portable probe that can be used for moisture monitoring in highway slopes and subgrades.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献