Batch Acquisition for Parallel Bayesian Optimization—Application to Hydro-Energy Storage Systems Scheduling

Author:

Gobert MaximeORCID,Gmys JanORCID,Toubeau Jean-FrançoisORCID,Melab Nouredine,Tuyttens Daniel,Vallée FrançoisORCID

Abstract

Bayesian Optimization (BO) with Gaussian process regression is a popular framework for the optimization of time-consuming cost functions. However, the joint exploitation of BO and parallel processing capabilities remains challenging, despite intense research efforts over the last decade. In particular, the choice of a suitable batch-acquisition process, responsible for selecting promising candidate solutions for batch-parallel evaluation, is crucial. Even though some general recommendations can be found in the literature, many of its hyperparameters remain problem-specific. Moreover, the limitations of existing approaches in terms of scalability, especially for moderately expensive objective functions, are barely discussed. This work investigates five parallel BO algorithms based on different batch-acquisition processes, applied to the optimal scheduling of Underground Pumped Hydro-Energy Storage stations and classical benchmark functions. Efficient management of such energy-storage units requires parallel BO algorithms able to find solutions in a very restricted time to comply with the responsive energy markets. Our experimental results show that for the considered methods, a batch of four candidates is a good trade-off between execution speed and relevance of the candidates. Analysis of each method’s strengths and weaknesses indicates possible future research directions.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3