A Multi-Dimensional Matrix Product—A Natural Tool for Parameterized Graph Algorithms

Author:

Kowaluk MirosławORCID,Lingas AndrzejORCID

Abstract

We introduce the concept of a k-dimensional matrix product D of k matrices A1,…,Ak of sizes n1×n,…,nk×n, respectively, where D[i1,…,ik] is equal to ∑ℓ=1nA1[i1,ℓ]×…×Ak[ik,ℓ]. We provide upper bounds on the time complexity of computing the product and solving related problems of computing witnesses and maximum witnesses of the Boolean version of the product in terms of the time complexity of rectangular matrix multiplication. The multi-dimensional matrix product framework is useful in the design of parameterized graph algorithms. First, we apply our results on the multi-dimensional matrix product to the fundamental problem of detecting/counting copies of a fixed pattern graph in a host graph. The recent progress on this problem has not included complete pattern graphs, i.e., cliques (and their complements, i.e., edge-free pattern graphs, in the induced setting). The fastest algorithms for the aforementioned patterns are based on a reduction to triangle detection/counting. We provide an alternative simple method of detection/counting copies of fixed size cliques based on the multi-dimensional matrix product. It is at least as time efficient as the triangle method in cases of K4 and K5. Next, we show an immediate reduction of the k-dominating set problem to the multi-dimensional matrix product. It implies the W[2] hardness of the problem of computing the k-dimensional Boolean matrix product. Finally, we provide an efficient reduction of the problem of finding the lowest common ancestors for all k-tuples of vertices in a directed acyclic graph to the problem of finding witnesses of the Boolean variant of the multi-dimensional matrix product. Although the time complexities of the algorithms resulting from the aforementioned reductions solely match those of the known algorithms, the advantage of our algorithms is simplicity. Our algorithms also demonstrate the versatility of the multi-dimensional matrix product framework.

Funder

Swedish Research Council

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference39 articles.

1. Complexity of Monotone Networks for Boolean Matrix Product;Paterson;Theor. Comput. Sci.,1975

2. A Lower Bound on the Number of Additions in Monotone Computations;Schnorr;Theor. Comput. Sci.,1976

3. Gaussian elimination is not optimal;Strassen;Numer. Math.,1969

4. Alman, J., and Williams, V.V. (2021, January 10–13). A Refined Laser Method and Faster Matrix Multiplication. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), Virtual.

5. Aumman, N., Levenstein, M., Levenstein, N., and Tsur, D. (2007, January 9–11). Finding witnesses by peeling. Proceedings of the Combinatorial Pattern Matching (CPM), London, ON, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Small Complete Subgraphs Efficiently;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3