Wearable Technologies for Electrodermal and Cardiac Activity Measurements: A Comparison between Fitbit Sense, Empatica E4 and Shimmer GSR3+

Author:

Ronca Vincenzo12ORCID,Martinez-Levy Ana C.23,Vozzi Alessia24ORCID,Giorgi Andrea24ORCID,Aricò Pietro12ORCID,Capotorto Rossella13,Borghini Gianluca23ORCID,Babiloni Fabio235ORCID,Di Flumeri Gianluca23ORCID

Affiliation:

1. Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy

2. BrainSigns Srl, 00198 Rome, Italy

3. Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy

4. Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185 Rome, Italy

5. College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China

Abstract

The capability of measuring specific neurophysiological and autonomic parameters plays a crucial role in the objective evaluation of a human’s mental and emotional states. These human aspects are commonly known in the scientific literature to be involved in a wide range of processes, such as stress and arousal. These aspects represent a relevant factor especially in real and operational environments. Neurophysiological autonomic parameters, such as Electrodermal Activity (EDA) and Photoplethysmographic data (PPG), have been usually investigated through research-graded devices, therefore resulting in a high degree of invasiveness, which could negatively interfere with the monitored user’s activity. For such a reason, in the last decade, recent consumer-grade wearable devices, usually designed for fitness-tracking purposes, are receiving increasing attention from the scientific community, and are characterized by a higher comfort, ease of use and, therefore, by a higher compatibility with daily-life environments. The present preliminary study was aimed at assessing the reliability of a consumer wearable device, i.e., the Fitbit Sense, with respect to a research-graded wearable, i.e., the Empatica E4 wristband, and a laboratory device, i.e., the Shimmer GSR3+. EDA and PPG data were collected among 12 participants while they performed multiple resting conditions. The results demonstrated that the EDA- and PPG-derived features computed through the wearable and research devices were positively and significantly correlated, while the reliability of the consumer device was significantly lower.

Funder

European Commission

Sapienza University of Rome

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3