Modeling of Ammunition Dynamic Pressure Measurement Chain in Ballistic Tests

Author:

Felix Caio Bittencourt Cardoso1ORCID,Medeiros Khrissy Aracélly Reis2ORCID,Barbosa Carlos Roberto Hall1ORCID

Affiliation:

1. Postgraduate Programme in Metrology, Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22451-900, Brazil

2. Mechanical Engineering Department, Optical Fiber Sensors Laboratory, Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22451-900, Brazil

Abstract

The use of piezoelectric transducers for internal dynamic pressure measurements in ammunition testing provides a significant advantage in the development and performance analysis of weapons and ammunition. Knowledge of the electrical characteristics of the dynamic pressure measurement chain, which includes the piezoelectric transducer and the charge amplifier, is a relevant condition for the design of interior ballistics pressure measurement systems. Thus, this study aims to characterize and model a piezoelectric transducer and its associated charge amplifier. First, the piezoelectric transducer was characterized using impedance analysis and modeled using a least squares curve-fitting tool, according to the Butterworth–Van Dyke model. Next, the charge amplifier was characterized through response analysis based on known inputs and modeled using LTSpice simulation techniques and the least squares curve-fit tool. Consequently, a measurement chain model is presented and simulated for two cases with different impulse signals. The first impulse signal was obtained from an interior ballistics computer simulation, and in the second case, it was considered the negative step signal characteristic of the calibration of piezoelectric transducers by means of dead weight. From the simulations, it was possible to verify the effectiveness of the model, which provided results with a low error in relation to the original pressure curve, and its applicability is demonstrated by the result of the simulation of the pressure variation in the calibration, where the attenuation of the signal can be visualized as the characteristic of the input curve changes.

Funder

CNPq

CAPES

FINEP

FAPERJ

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3