The Denoising Method for Transformer Partial Discharge Based on the Whale VMD Algorithm Combined with Adaptive Filtering and Wavelet Thresholding

Author:

Wu Zhongdong1,Zhang Zhuo1,Zheng Li1,Yan Tianfeng1,Tang Chunyang12

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Silk Road Fantian (Gansu) Communication Technology Co., Ltd., Lanzhou 730070, China

Abstract

Partial discharge (PD) is the primary factor causing insulation degradation in transformers. However, the collected signals of partial discharge are often contaminated with significant noise. This makes it difficult to extract the PD signal and hinders subsequent signal analysis and processing. This paper proposes a denoising method for transformer partial discharge based on the Whale VMD algorithm combined with adaptive filtering and wavelet thresholding (WVNW). First, the WOA is used to optimize the important parameters of the VMD. The selected mode components from the VMD decomposition are then subjected to preliminary denoising based on the kurtosis criterion. The reconstructed signal is further denoised using the Adaptive Filter (NLMS) algorithm to remove narrowband interference noise. Finally, the residual white noise is eliminated using the Wavelet Thresholding algorithm. In simulation experiments and practical measurements, the proposed method is compared quantitatively with previous methods, VMD-WT, and EMD-WT, based on metrics such as SNR, RMSE, NCC, and NRR. The results indicate that the WVNW method effectively suppresses noise interference and restores the original PD signal waveform with high waveform similarity while preserving a significant amount of local discharge signal features.

Funder

Gansu Province Major Science and Technology Projects

Gansu Provincial Top Talent Project

Gansu Provincial Key Talent Project

Gansu Provincial Department of Science and Technology Youth Science and Technology Fund

Youth Science Fund of Lanzhou Jiaotong University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3