Promising Effects of Novel Supplement Formulas in Preventing Skin Aging in 3D Human Keratinocytes

Author:

Punzo Angela12ORCID,Perillo Matteo1ORCID,Silla Alessia3,Malaguti Marco3ORCID,Hrelia Silvana3ORCID,Barardo Diogo4ORCID,Caliceti Cristiana12ORCID,Lorenzini Antonello12ORCID

Affiliation:

1. Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy

2. Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy

3. Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy

4. NOVOS Labs, New York, NY 10017, USA

Abstract

Dietary intervention is considered a safe preventive strategy to slow down aging. This study aimed to evaluate the protective effects of a commercially available supplement and six simpler formulations against DNA damage in 3D human keratinocytes. The ingredients used are well known and were combined into various formulations to test their potential anti-aging properties. Firstly, we determined the formulations’ safe concentration by evaluating cytotoxicity and cell viability through spectrophotometric assays. We then examined the presence of tumor p53 binding protein 1 and phosphorylated histone H2AX foci, which are markers of genotoxicity. The foci count revealed that a 24-h treatment with the supplement did not induce DNA damage, and significantly reduced DNA damage in cells exposed to neocarzinostatin for 2 h. Three of the simpler formulations showed similar results. Moreover, the antioxidant activity was tested using a recently developed whole cell-based chemiluminescent bioassay; results showed that a 24-h treatment with the supplement and three simpler formulations significantly reduced intracellular H2O2 after pro-oxidant injury, thus suggesting their possible antiaging effect. This study’s originality lies in the use of a 3D human keratinocyte cell model and a combination of natural ingredients targeting DNA damage and oxidative stress, providing a robust evaluation of their anti-aging potential.

Funder

NOVOS Labs

Fondazione Cassa di Risparmio di Bologna

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3