Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band

Author:

Han JuzhengORCID,Ding Dazhi

Abstract

In this paper, we have designed, analyzed, and characterized a hybrid-type MEMS device for X-band phase shift measurement. The signal related to a phase shift of the inputs is fractionally in-line coupled by a MEMS beam and delivered to a thermoelectric power sensor, where the phase is ultimately converted into DC voltage output. With the hybrid of the MEMS beam and the thermoelectric power sensor, both in-line detection process and phase-DC voltage conversion is reserved, which is a benefit for large power capacity, good linearity property, and high-level integration density. In order to get a deep insight into the physical mechanisms involved in the phase detection process, a comprehensive analysis model is presented. The beam is modeled as a precise RLC circuit component, where the capacitance is related to the input power. The fabrication is compatible with GaAs monolithic microwave integrated circuit (MMIC) technology. Experimental results show that return loss is smaller than −11.3 dB and isolation is better than −9.3 dB over X-band. Phase shift detection from 0 to 180 degrees is verified for a large power range of 200–1600 mW (23–32 dBm). The perfect linearity property of the phase-detection sensitivity is demonstrated in the same power range. Low intermodulation distortion is also confirmed through measurement. It is revealed from the comparison between this work and other published results in the literature that this presented hybrid-type structure shows superiorities in both power handling ability and phase-detection linearity. It can be adopted in medium power signal applications with a high level of integration.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3