Kinetics Analysis and ADRC-Based Controller for a String-Driven Vascular Intervention Surgical Robotic System

Author:

Zhou WeiORCID,Guo Shuxiang,Guo Jin,Chen Zhengyang,Meng Fanxu

Abstract

Vascular interventional surgery is a typical method for diagnosing and treating cardio-cerebrovascular diseases. However, a surgeon is exposed to significant X-radiation exposure when the operation is conducted for a long period of time. A vascular intervention surgical robotic system for assisting the surgeon is a promising approach to address the aforementioned issue. When developing the robotic system, a high displacement accuracy is crucial, and this can aid in enhancing operating efficiency and safety. In this study, a novel kinetics analysis and active disturbance rejection control (ADRC)-based controller is proposed to provide high accuracy for a string-driven robotic system. In this controller, kinetics analysis is initially used to improve the accuracy affected by the inner factors of the slave manipulator. Then, the ADRC controller is used to further improve the operating accuracy of the robotic system. Finally, the proposed controller is evaluated by conducting experiments on a vascular model. The results indicate maximum steady errors of 0.45 mm and 6.67°. The experimental results demonstrate that the proposed controller can satisfy the safety requirements of the string-driven robotic system.

Funder

National High-tech Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robotic Systems Design in Endovascular Treatment;IEEE Transactions on Medical Robotics and Bionics;2024-05

2. Design and Performance Analysis of HMDV Dynamic Inertial Suspension Based on Active Disturbance Rejection Control;Computer Modeling in Engineering & Sciences;2024

3. Compact Design and Task Space Control of a Robotic Transcatheter Delivery System for Mitral Valve Implant;IEEE Transactions on Medical Robotics and Bionics;2023-11

4. Vascular Intervention Surgical Robot Master-Slave Force Sensing Technology;2023 2nd International Conference on Health Big Data and Intelligent Healthcare (ICHIH);2023-10-27

5. A Portable Surgeon’s Habits-based Master Manipulator for Vascular Interventional Surgery Robots;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3