Abstract
Zirconia is a high demanded structural ceramic with desirable mechanical, thermal, and chemical properties. Poor surface integrity and limited material removal rate caused by high cutting force and wheel wear are the main problems in ceramic grinding. In order to reduce the grinding force and enhance the removal rate in grinding, zirconia ceramics are firstly ablated by laser and then be grinded. A nanosecond laser is used to ablate the surface of zirconia ceramic, the laser-ablated structures with micro pits and thermal microcracks are generated. With the input of subsequent grinding, the machinability of zirconia ceramic workpiece with laser-ablated structures changes. Grinding experiments are conducted to study the grinding force and the material remove of laser-structured zirconia ceramic. Results show that the grinding forces in tangential and normal direction are significantly reduced. Compared to the grinding surface without laser-structured, a damage-free grinding surface is obtained by laser assistance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Research Project of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献