Particularities of R134a Refrigerant Temperature Variations in a Transient Convective Regime during Vaporization in Rectangular Microchannels

Author:

Mihai IoanORCID,Suciu CornelORCID,Picus Claudiu Marian

Abstract

An analysis of the R134a (tetrafluoroetane) coolant’s non-stationary behavior in rectangular microchannels was conducted with the help of a newly proposed miniature refrigerating machine of our own design and construction. The experimental device incorporated, on the same plate, a condenser, a lamination tube and a vaporizer, all of which integrated rectangular microchannels. The size of the rectangular microchannels was determined by laser profilometry. R-134a coolant vapors were pressurized using a small ASPEN rotary compressor. Using the variable soft spheres (VSS) model, the mean free path, Knudsen and Reynolds numbers, as well as the dimensionless velocity profile can be assessed analytically. In order to determine the average dimensionless temperature drop in the vaporizer’s rectangular microchannels, in non-stationary regime, an analytical solution for incompressible flow with slip at the walls, fully developed flow and laminar regime was used, by aid of an integral transform approach. In the experimental study, the transitional distribution of temperature was tracked while modifying the R134a flow through the rectangular microchannels. Coolant flow was then maintained at a constant, while the amount of heat absorbed by the vaporizer was varied using multiple electric resistors. A comparative analysis of the analytical and experimental values was conducted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3