Multifunctional Graphene-Based Composite Sponge

Author:

Cui Xu,Tian Jiayu,Yu Yin,Chand Aron,Zhang Shuocheng,Meng QingshiORCID,Li Xiaodong,Wang Shuo

Abstract

Although graphene has been widely used as a nano-filler to enhance the conductivity of porous materials, it is still an unsatisfactory requirement to prepare graphene-based sponge porous materials by simple and low-cost methods to enhance their mechanical properties and make them have good sensing and capacitive properties. Graphene platelets (GnPs) were prepared by the thermal expansion method. Graphene-based sponge porous materials were prepared by a simple method. A flexible sensor was formed and supercapacitors were assembled. Compared with other graphene-based composites, the graphene-based composite sponge has good electrical response under bending and torsion loading. Under 180° bending and torsion loading, the maximum resistance change rate can reach 13.9% and 52.5%, respectively. The linearity under tension is 0.01. The mechanical properties and capacitance properties of the sponge nanocomposites were optimized when the filler fraction was 1.43 wt.%. The tensile strength was 0.236 MPa and capacitance was 21.4 F/g. In cycles, the capacitance retention rate is 94.45%. The experimental results show that the graphene-based sponge porous material can be used as a multifunctional flexible sensor and supercapacitor, and it is a promising and multifunctional porous nanocomposite material.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3