On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes

Author:

Huang WeiORCID,Zhou Jianzhong,Zhang DongyingORCID

Abstract

Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods’ affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3