Abstract
Conventional power management methods of networked microgrids (NMGs) are limited to the failure of pinned communication terminals and heavy communication burdens. This paper proposes a multilevel dynamic master-slave control strategy via two-level dynamic leaders to realize the resilience enhanced power management of NMGs. The first level dynamic leader with considerations of distributed energy resources (DERs) feature is selected to guide the output of DERs and achieve the power management within individual microgrid (MG). Subsequently, the secondary level leader considering each MG feature is selected among the bidirectional interlinking converters (BICs), whose signals would be shared with other BICs by communication to achieve power management among MGs. Moreover, the local weight selecting method (LWSM) is proposed to automatically select the two-level dynamic leaders according to the real-time system operation state. Compared with conventional methods, the communication among MGs is essentially realized through the dynamic DER leaders instead of pinned ones. Therefore, unreliability issues in the event of pinned terminal outage and converters’ communication failure can be fully addressed and the communication bus within each only needs to transmit one DER’s signals. The proposed strategy can be also extended to NMGs with various topologies and provide the “plug and play” capabilities of DERs or MGs. Finally, the effectiveness and feasibility of the proposed strategy are verified through the PSCAD/EMTDC platform.
Funder
Science and Technology Project of State Grid Headquarters of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献