Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data

Author:

Heim ElisaORCID,Laska MariusORCID,Becker Ralf,Klitzsch NorbertORCID

Abstract

Ground-source heat pumps with borehole heat exchangers (BHE) are an efficient and sustainable option to heat and cool buildings. The design and performance of BHEs strongly depend on the thermal conductivity of the subsurface. Thus, the first step in BHE planning is often assisted by a map representing the thermal conductivity of a region created from existing data. Such estimates have high uncertainty, which is rarely quantified. In addition, different methods for estimating thermal conductivity are used, for example, by the German federal states, resulting in incomparable estimates. To enable a consistent thermal conductivity estimation across state or country borders, we present a workflow for automatically estimating the thermal conductivity and its uncertainty up to user-defined BHE lengths. Two methods, which assess the thermal conductivity on different scales, are developed. Both methods are (1) based on subsurface data types which are publicly available as open-web services, and (2) account for thermal conductivity uncertainty by estimating its lowest, mean, and maximum values. The first method uses raster data, e.g., of surface geology and depth to groundwater table, and provides a large-scale estimate of the thermal conductivity, with high uncertainty. The second method improves the estimation for a small, user-defined target area by calculating the thermal conductivity based on the available borehole data in that area. The presented approach’s novelty is a web-based geodata infrastructure that seamlessly connects data provision and calculation processes, with a geoportal as its central user interface. To demonstrate the approach, we use data from the federal state of Hamburg and compare the results of two target areas with the thermal conductivity estimation by the Geological Survey of Hamburg. Depending on the selected region, differences between the two estimates can be considerable (up to 1.2 W m−1 K−1). The differences are primarily due to the selection of the thermal property database and the consideration of wet and dry rock. The results emphasize the importance of considering and communicating uncertainty in geothermal potential estimates.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference60 articles.

1. Heating and Cooling—Facts and Figures https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2017/29882_Brochure_Heating-and-Cooling_web.pdf

2. Declining Share of Space Heating in the EU|Space Heating|ODYSSEE-MURE https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/declining-share-space-heating-eu.html

3. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system

4. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review

5. Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3