Reactive Power and Voltage Optimization of New-Energy Grid Based on the Improved Flower Pollination Algorithm

Author:

He Hao,Li Jia,Zhao Weizhe,Li Boyang,Li Yalong

Abstract

In order to solve the reactive power and voltage control problem caused by the high proportion of new energy connected to the power grid, this paper takes the minimum voltage deviation, minimum network loss and maximum dynamic reactive power margin of the whole system as the comprehensive optimization objectives and establishes a reactive power and voltage optimization model by considering the reactive power regulation ability of SVC (Static Var Compensator) and new energy units. In view of the continuous and discrete variables in the model, the traditional continuous FPA (Flower Pollination Algorithm) is discretized to form an improved continuous-discrete hybrid FPA, and the tournament selection mechanism is adopted to speed up the convergence. Through the example analysis of the IEEE-39 bus system, the feasibility of the proposed reactive power and voltage optimal control method in the new energy grid is verified. Compared with GA (Genetic Algorithm), the results show that the improved FPA has high optimization accuracy, which is suitable for solving the reactive power and voltage optimization problem of the new energy grid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3