Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops

Author:

Gálvez David Morillón,Kerdan Iván GarcíaORCID,Carmona-Paredes Germán

Abstract

Large educational facilities hold great potential for the implementation of solar-based distributed energy systems. The aim of this paper is to present a prototype and an assessment of a solar-based bus shelter photovoltaic system intended to be implemented at a campus scale that serves as an energy-distributed system. The National Autonomous University of Mexico (UNAM), a campus with an area of 7.3 km2 and bus stops’ roof area availability of around 1100 m2 was selected as a case study. The proposed system, apart from considering on-site generation, also considers an increase in end-use services such as the installation of television screens for information, charging docks, surveillance cameras, internet service, and lighting. For the assessment, a load facility survey and an estimation of the baseline energy use was conducted based on two demand use conditions, corresponding to 12 and 24 h for different archetypical stations. It was found that the baseline annual energy consumption for all the bus stops represents from 55–111 MWh. In this paper, an initial prototype of a solar-based bus shelter PV system is presented, and an assessment is carried out to understand its potential application at a large scale. The analysis shows that energy use in the retrofitted stations would rise to 167 MWh/year; however, apart from covering on-site demand, the system has the capacity to generate an additional 175 MWh, feeding nearby university buildings. It is calculated that the system could save around 130 t CO2e annually. The economic analysis shows that the project has a discounted payback (DPB) of almost 9 years and an internal rate of return (IRR) of 5.9%; however, in scenarios where renewable generation and carbon incentives are applied, this improves the project’s DPB to 6 years and the IRR to 13%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Distributed Energy Systems. Flexible and Efficient Power for the New Energy Era,2016

2. Distributed Energy Resources for Net Zero: An Asset or a Hassle to the Electricity Grid?,2021

3. An Overview of Distributed Energy Resource (DER) Interconnection: Current Practices and Emerging Solutions;Horowitz,2019

4. Lessons from unsuccessful energy and buildings sustainability actions in university campus operations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3