Abstract
Large educational facilities hold great potential for the implementation of solar-based distributed energy systems. The aim of this paper is to present a prototype and an assessment of a solar-based bus shelter photovoltaic system intended to be implemented at a campus scale that serves as an energy-distributed system. The National Autonomous University of Mexico (UNAM), a campus with an area of 7.3 km2 and bus stops’ roof area availability of around 1100 m2 was selected as a case study. The proposed system, apart from considering on-site generation, also considers an increase in end-use services such as the installation of television screens for information, charging docks, surveillance cameras, internet service, and lighting. For the assessment, a load facility survey and an estimation of the baseline energy use was conducted based on two demand use conditions, corresponding to 12 and 24 h for different archetypical stations. It was found that the baseline annual energy consumption for all the bus stops represents from 55–111 MWh. In this paper, an initial prototype of a solar-based bus shelter PV system is presented, and an assessment is carried out to understand its potential application at a large scale. The analysis shows that energy use in the retrofitted stations would rise to 167 MWh/year; however, apart from covering on-site demand, the system has the capacity to generate an additional 175 MWh, feeding nearby university buildings. It is calculated that the system could save around 130 t CO2e annually. The economic analysis shows that the project has a discounted payback (DPB) of almost 9 years and an internal rate of return (IRR) of 5.9%; however, in scenarios where renewable generation and carbon incentives are applied, this improves the project’s DPB to 6 years and the IRR to 13%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference30 articles.
1. Distributed Energy Systems. Flexible and Efficient Power for the New Energy Era,2016
2. Distributed Energy Resources for Net Zero: An Asset or a Hassle to the Electricity Grid?,2021
3. An Overview of Distributed Energy Resource (DER) Interconnection: Current Practices and Emerging Solutions;Horowitz,2019
4. Lessons from unsuccessful energy and buildings sustainability actions in university campus operations
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献