Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques

Author:

Shaban MahmoudORCID,Alsharekh MohammedORCID

Abstract

Electric load management through continuous monitoring and intelligent controlling has become a pressing requirement, particularly in light of rising electrical energy costs. The main purpose of this work is to realize a low-voltage electrical distribution panelboard that allows for real-time load monitoring and that provides a load forecasting feature at the household level. In this regard, we demonstrate the design and the implementation details of an IoT-enabled panelboard with smart features. An IoT dashboard was used to display the most significant information in terms of voltage, current, real power, reactive power, apparent power, power factor, and energy consumption. Additionally, the panel system offers visualization capabilities that were integrated into a cloud-based machine learning modeling. Among several algorithms used, the Gaussian SVM regression exhibited the best training and validation results for the load forecasting feature. It is possible for the proposed design to be simply developed to add more smart features such as fault detection and identification. This assists in an efficient management of energy demand at the consumer level.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Designing sustainable smart cities: Cooperative energy management systems and applications;Fujimoto;IEEJ Trans. Electr. Electron. Eng.,2020

2. An electric power trading framework for smart residential community in smart cities;Rao;IET Smart Cities,2019

3. A survey on smart grid cyber-physical system testbeds;Cintuglu;IEEE Commun. Surv. Tutor.,2016

4. Dhaou, I.B., Kondoro, A., Kelati, A., Rwegasira, D.S., Naiman, S., Mvungi, N.H., and Tenhunen, H. (2018). Fog Computing: Breakthroughs in Research and Practice, IGI Global.

5. Communication network requirements for major smart grid applications in HAN, NAN and WAN;Kuzlu;Comput. Netw.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3