Investigating Long-Term Commitments to Replace Electricity Generation with SMRs and Estimates of Climate Change Impact Costs Using a Modified VENSIM Dynamic Integrated Climate Economy (DICE) Model

Author:

Shobeiri Elaheh,Shen Huan,Genco Filippo,Tokuhiro Akira

Abstract

During the last few years, nuclear energy has received great attention due to the increase in climate change awareness. According to the Paris agreement, global temperature is to be kept below 2 °C and preferably below 1.5 °C by 2050. This approach has been substantially confirmed in the recent COP 26 in Glasgow. This research investigates the effects of integrating SMR nuclear power plants (small modular reactors) into the Nordhaus Dynamic Integrated Climate Economy (DICE) model for reducing the CO2 emissions in the atmosphere by substituting all existing fossil-fueled power plants (FPPP). The software is based on the VENSIM dynamic systems modeling platform. Simulations were carried out from the year 2019 to 2100 using 10-year increments. Several scenarios were thus simulated replacing roughly 70,000 FPPPs operating at this time in the world. Simulations indicate a CO2 reduction of approximately 12.63% relative to the initial conditions used and using 87,830 SMR core units of 80 MWe electric each to meet such demand. The DICE model further predicts the cost of climate damage impacting the upper ocean and atmospheric temperatures, and the deep ocean temperature as USD 1.515 trillion (US Dollar; (US) trillion = 1,000,000,000,000 (1 × 1012)) by the end of this century. From a modified section of the model, a cost of USD 1.073 trillion is predicted as the toll on human health costs. This is thus equal to a USD 2.59 trillion loss in the economy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3