Abstract
Voltages of series-connected energy storage cells, such as electric double-layer capacitors (EDLCs) and lithium-ion batteries, need to be equalized to ensure years of safe operation. However, to this end, a voltage equalizer is necessary in addition to a charger, increasing the system complexity and cost. This paper proposes a family of transformerless single-switch integrated chargers that merge a charger and equalizer into a single unit, achieving a simplified system and circuit. Proposed integrated chargers are derived by stacking multiple conventional pulse width modulation (PWM) converters, such as a superbuck converter, that contain two inductors and one energy transfer capacitor. Detailed operation analyses, including an investigation on the impact of component tolerance on voltage equalization performance, are also performed. Experimental charging tests using a 12-W prototype were performed for four EDLC cells. All cells were charged with eliminating voltage imbalance and demonstrating the charging and equalization performance of the proposed integrated charger.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Supercapacitor Voltage Doubling Equalization Method Based on Adaptive Grouping;Journal of Electrochemical Energy Conversion and Storage;2024-01-12
2. Spacecraft Power Charging Regulator Based on Two-domain Control;2023 8th International Conference on Power and Renewable Energy (ICPRE);2023-09-22