Physicochemical Characterization of Phase Change Materials for Industrial Waste Heat Recovery Applications

Author:

Fernández Angel G.ORCID,González-Fernández LuisORCID,Grosu YaroslavORCID,Labidi JalelORCID

Abstract

The recovery and storage of process heat in industrial applications are some of the key factors to improve the sustainability and reliability of high temperature applications. In this sense, one of the main drawbacks is focused on the selection of proper thermal energy storage (TES) materials. This paper performs a full characterization of four phase change storage materials (PCM), KOH, LiOH, NaNO3 and KNO3, which are proposed for storage applications between 270 and 500 °C, according to the results obtained through differential scanning calorimeter and thermogravimetric analysis. One of the main innovations includes the corrosive evaluation of these materials in a promising alumina forming alloy (OC4), close to their corresponding phase change temperature during 500 h. The physicochemical properties obtained confirm the optimal use of NaNO3 and KNO3 and recommend the use, with caution, of KOH, due to its higher corrosive potential. FeCr2O4, NiCr2O4 and FeAl2O4 were the main protective spinels formed in the alloy surface, however, the cross-section study in the alloy immersed in KOH, revealed a non-uniform behavior, presenting some cracks and spallation in the surface. On the other hand, the proposal of LiOH was disregarded since it presents a narrow operation temperature range between melting and solidification point.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3