Parameter Effect Analysis of Non-Darcy Flow and a Method for Choosing a Fluid Flow Equation in Fractured Karstic Carbonate Reservoirs

Author:

Wang YueyingORCID,Yao Jun,Huang Zhaoqin

Abstract

Fractured karstic carbonate reservoirs have obvious multi-scale characteristics and severe heterogeneity due to the development of abundant karst caves and fractures with different scales. Darcy and non-Darcy flows coexist due to this property. Therefore, selecting the appropriate flow equations for different regions in the numerical simulation of fluid flows, particularly two-phase and multiphase flows, is a critical topic. This paper compares and analyses the displacement distance differences of waterfront travel using the Darcy, Forchheimer and Barree–Conway equations, as well as analyzes the influence of the Forchheimer constant, fluid viscosity, flow rate and absolute permeability on inertia action based on the Buckley–Leverett theory. The results show that the Forchheimer number/Reynolds number of water/oil two-phase flow is not a constant value and varies with water saturation, making it difficult to determine whether the inertial action should be considered solely based on these values; the influence of inertial action can be measured well by comparing the difference between the displacement distances of the waterflood front, and the quantitative standard is given for the selection of the flow equation of different regions by calculating the allowable error of the displacement distance of the waterflood front. The magnitude of the inertial effect is affected by the physical properties of the fluid and reservoir medium and the fluid velocity. The smaller the difference in the viscosity of the oil/water fluid, the smaller the inertial effect is. This technique was used a preliminary attempt to analyze the fractured karstic carbonate reservoirs at Tarim, and the results confirmed the validity of the method described in this article.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. A snapshot of carbonate reservoir evaluation;Akbar;Oilfield Rev.,2000

2. A machine learning framework for rapid forecasting and history matching in unconventional reservoirs

3. Modern system of multiphase flow in porous media and its development trend

4. Les Fontaines Publiques de la Ville de Dijon;Darcy,1856

5. Wasserbewegung durch boden;Forchheimer;Z. Ver Deutsh. Ing.,1901

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3