Abstract
The article presents experimental and numerical studies of bird models during impacts with rigid and deformable targets. The main aim of the studies is the validation of bird models in order to prepare them for the numerical simulation of bird impact against aircraft windshields and other parts of aircraft, thus improving the air transportation safety by providing cost-effective solutions for designing bird strike-resistant aircraft. The experimental investigations were conducted with a special set-up of a gas gun equipped with high-speed cameras, tensiometers and force sensors. The simulations were developed on the basis of LS-DYNA software by means of the SPH method for the bird model shape of the cylinder with hemispherical endings at the speed of 116 m/s. The results of studies into such things as the impact force, pressure and bird model deformation were compared. Moreover, the authors’ and other researchers’ results were assessed. It can be noted that the curves of the impact force obtained as a result of the numerical analysis correlated well with the experimental ones.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference60 articles.
1. Transportation Systems Reliability and Safety;Dhillon,2011
2. Patterns in Safety Thinking: A Literature Guide to Air Transportation Safety;Mclntyre,2017
3. Simulation Model to Calculate Bird-Aircraft Collisions and Near Misses in the Airport Vicinity
4. The Efficacy of Operational Bird Strike Prevention
5. Bird Strike Damage & Windshield Bird Strike Final Report;Dennis,2009
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献