A Novel Method to Describe Large-Range Stress-Strain Relations of Elastic-Plastic Materials Based on Energy Equivalence Principle

Author:

Yu SimiaoORCID,Cai Lixun,Wang Ling,Lang Lin

Abstract

Due to the unique structure of tensile sheet specimens with a circular hole (CHS specimen), a novel method is proposed to predict the large-range uniaxial stress-strain relations of elastic-plastic materials analytically. Based on the energy equivalence principle, a load-displacement semi-analytical model of the CHS specimen is proposed. Subsequently, a semi-analytical model of constitutive parameters of elastic-plastic materials is developed by virtue of the load-displacement relation of the CHS specimen, and the prediction of the material’s stress-strain relations is obtained. To examine the validity of the models, numerical simulations with a series of materials were performed. The results demonstrated that the dimensionless load-displacement curves and stress-strain relations obtained using the proposed models correspond well with those obtained using finite element analysis. In addition, tensile tests were performed on the CHS specimen for four elastic-plastic materials (T225 titanium alloy, 6061 aluminum alloy, Q345 steel, and 3Cr13 steel), and the validity of the models is also verified by the experimental results. Compared with the conventional uniaxial tensile tests, the stress-strain relation of elastic-plastic material captured by the novel method corresponds to a larger strain, which is of great importance for engineering design and safety assessment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan of China

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. Bridgman, P.W. (1952). Studies in Large Flow and Fracture, McGraw-Hill.

2. Distribution of stress and plastic strain in circumferentially notched tension specimens;Earl;Eng. Fract. Mech.,1976

3. Stress and strain distribution in a tension specimen with a circumferentially notch;Clausing;J. Mater.,1969

4. Chen, C. (1978). A Collection of Metal Fracture Research, Metallurgical Industry Press Co., Ltd.

5. Uniaxial true stress-strain after necking;Ling;AMP J. Technol.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3