Abstract
Cold spray (CS)-fabricated metal–graphene composites have applications in several fields ranging from tribology and corrosion protection to antibacterial applications. However, it is critical from a process perspective to create a viable feedstock, and to this end, there are two widely reported techniques: ball milling and in situ reduction. In this paper, the CS feedstocks prepared via these two methods are compared and contrasted with other miscellaneous techniques in the literature based on their efficacies and the end properties of the fabricated coatings. CS metal–graphene composite coatings are found to display self-healing behaviour and excellent corrosion/wear resistance and mechanical properties, but at this juncture, there is a gap in the literature as far as the CS fabrication of self-standing metal–graphene composite parts is concerned. Several future research avenues are discussed to fully comprehend the printability and functionality of metal/GNP composite cold-sprayed structures.